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Introduction 

Smart low-cost air quality sensing devices have enabled the collection of air quality data on a lower 

budget – and with higher spatial resolution – than has previously been possible using high grade air 

quality reference instruments alone, such as those used in air quality monitoring sites1. However, a 

challenge that can sometimes arise when using low-cost sensing devices is that the data generated by 

individual devices can be faulty or misleading, which negatively impacts the overall quality of the 

collected data.  

This chapter provides information on how sensing device measurements can sometimes go wrong, and 

what approaches you can take to mitigate this. Depending on your exact application, it may be essential 

that you first perform co-location and calibration activities, well before collecting any data.  

If the data gathered by your project will be used to inform critical decisions, then you need to have a very 

clear understanding of the accuracy of the data collected by your project’s sensing device network. 

Important questions to ask include:  

• How does your sensing device vendor quantify the measurement data accuracy of the devices?  

• What is the deviation between your devices and the true measurement of pollutants (as 

measured by a certified reference grade instrument)? 

• Does your device vendor have their own method or guidance for calibration of devices?  

Who is this resource for? 

This OPENAIR Best Practice Guide chapter is for local government staff responsible for managing and 

operating an air quality monitoring project. It is designed to be useful to project staff who may need to 

understand how to carry out co-location and calibration processes before an entire sensing network is 

deployed and activated (or who are tasked with hiring contractors to do this).  

The information in this chapter is relevant to air quality sensing applications that are classified as Tier 2 

or 3 (see the OPENAIR supplementary resource A framework for categorising air quality sensing 

devices, which defines air quality projects according to the quality of the data required). In Tier 2 or 3 

applications, your project data will be used to make decisions as required by your business case, or will 

be used as supporting evidence to answer a research question.  

How to use this resource 

This chapter will provide an overview of why device co-location and calibration are required, and how to 

carry out these procedures. It will also help you to assign the necessary financial and human resources 

for your air quality monitoring project, by giving you a clear idea of the time and technical skills required.  

 

1 A list of measurement techniques used for air pollutants by the NSW Department of Planning and Environment 
are on their website here. 
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What is calibration?  

Calibration is the process of configuring an instrument to provide a result within an acceptable range. 

Smart low-cost air quality sensing devices have great potential for local air quality monitoring projects, 

but without a clear understanding of their performance, the data they generate can end up being faulty  

or misleading.   

A key method of addressing this is to compare the output of a low-cost sensing device to a ‘gold

standard’ certified reference grade air quality instrument, which has a high degree of confidence in terms 

of precision and accuracy. This exercise is referred to as a co-location measurement. It is highly 

recommended that co-location is carried out, especially if the device manufacturer recommends it. This 

process provides solid evidence of sensing device performance, and the information it generates can be 

used to create correction factors to calibrate individual sensors.  

What can go wrong without calibration? 

Sensing devices can report incorrect results due to a range of issues, such as power outages, sensor 

blockage, and electronics failures. Even without those particular obstacles, an individual sensor (as a 

component within the sensing device) may still report measurements that differ from the true value.  

At the highest level, this can appear as a scale and/or offset factor. This is demonstrated in Figure 1, 

which shows a hypothetical measurement (green) compared to the true (black) measurement over time. 

In all cases, there appears to be a general agreement in the reported data points, but in Case A, the 

relative heights of the measurements are different, and there is a general off-set. Case B shows no

scaling issue, but there is a constant offset in the data. Case C shows the ideal case (often achieved 

after a successful calibration), where there is good agreement between the measurement and the  

true value.  

There will always be a degree of error associated with the measurements of any sensor. These errors 

can be minimised by following the correct co-location and calibration processes. Figure 1 shows how an 

uncalibrated sensor can produce air pollution values that are multiple times higher than the true value, 

leading to false conclusions. This can also happen in the opposite direction, where readings are under-

reported from the true value.  
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Figure 1. A simplified example of sensors that suffer calibration issues. In Case A, the collected data is off-scale and offset from 

the true values. The data in Case B has no scaling issue, but there is a constant offset from the true value. Under these 

conditions, a successful calibration results in the ideal Case C.

Why do readings from devices vary? 

Sensing device vendors will advertise that their devices operate within a certain performance range, but 

there are many factors that can cause device readings to differ (some of which may not be the fault of 

the vendor). Despite efforts in making sensors identical, in practice it is often difficult for them to report 

the exact same values. For instance, particle sensors rely on a precise alignment of light sources and 

detectors to measure particles that are smaller than the width of a human hair. Uncertainty in 

manufacturing tolerances, light source power fluctuations, and detector alignment can all contribute to 

errors in the sensor readings.  

Figure 2 shows readings from two ‘identical’ particle sensors, placed at the same location across the 

same time period (Device 2’s data has been artificially shifted up for clarity). At first glance, the readings 

are very similar. However, on closer inspection, there are minor differences in the relative shape and 

height of the peaks associated with air pollution events. These two sensors agree with an R2 value2 of 

91%, which is relatively high, but there are still discrepancies. 

 

2 R2 is the represents the Pearson correlation coefficient. It is the most common parameter to measure the strength 
of linear association between two variables. It will be further explained later in this chapter. 



 

 

4 Best Practice Guide | Implement and operate | Sensing device calibration 

 

Figure 2. Comparison of data sets from two particle counters located in the same position (Device 2’s values have been

artificially shifted for clarity). There is an overall agreement between the counts over time, but closer inspection shows slight 

differences caused from errors in the devices themselves. 

There are also environmental factors that will affect the readings, in ways that might be quite different to

those stated in a sensing device vendor’s data sheet. Some factors to note include:   

• Temperature and humidity  

These factors can affect the electronics of the sensing device (such as the photodetector’s

sensitivity, or an electrochemical sensor’s efficiency). High levels of humidity can cause certain 

pollutants to ‘swell’ and effect sensor readings. Advanced sensors may have a heated inlet to 

remove excess humidity, but this feature is not common in low-cost sensing devices.   

• Local climate conditions  

The immediate environment of the site where your sensing devices are located can affect their 

readings (e.g. if they are inside a wind tunnel, or in a low-circulation zone). This means that 

individual sensor readings may not be representative of the wider region.  

• Chemical make-up and cross-contamination   

Certain pollutants, mainly gases such NO2, may cross-contaminate low-cost sensors designed to 

detect another pollutant - leading to false readings. This is known to be the case for 

electrochemical sensors that are not highly selective to the pollutants they were designed for. 

The chemical make-up of pollutants locally may also be different to those present in the location 

where the sensing devices were initially tested. For instance, an inland region may have high 

levels of dust, whereas coastal areas may have high levels of sea salt particles.  

Some of these factors are described in more detail in the OPENAIR supplementary resource Sensing 

device performance evaluation methodology.
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How much variation should I expect?  

Given that all sensors have inherent errors in their readings, it is important to consider how these values 

are reported, and how to interpret them. Not all sensing device vendors report their errors in the same 

way, which can make this process difficult. Most vendors will describe their sensing device performance 

in general terms, including the following factors: 

• Range or limit of detection – the operating limits of the sensor, or the smallest value able to be 

detected by the device 

• Precision – how reliable/repeatable multiple measurements are over time (often characterised 

by an R2 value with a reference instrument) 

• Accuracy – how close the measured value is to the true value (quoted as an absolute value, 

such as ± 10 µg/m3).  

Be careful when interpreting these values. It is useful to consider when and where the test was done to 

derive these numbers, whether it was a lab test or outside test, which environmental conditions were 

present during the test, and whether the metrics were derived before or after a correction factor  

was applied. 

As an example, the vendors of the Clarity Node-S sensing device have published the margins of error for 

their particulate matter (PM 3) sensor, as shown in Figure 3 (Clarity, 2023). Below 100 µg/m3, the 

accuracy is quoted at ± 10 µg/m3, whereas above this value, it is quoted as ± 10%. The precision is 

characterised in terms of an ‘R2 > 0.8’, when tested against a US EPA FEM instrument4. These values 

can be used to guide your device procurement decisions, but should not be the only deciding factor. 

Figure 3. A comprehensive list of sensor specifications provided by (Clarity, 2023) for their particulate matter readings. This 

provides details on the range, resolution, and accuracy for specific pollutant levels. It also provides an R2 correlation value 

compared to a US EPA FEM instrument.  

Importantly, these reported values are “performance after calibration”. This means a mathematical

correction has been done on the raw data to correct for the range of error-producing effects mentioned 

above. Depending on the vendor, this correction may be proprietary intellectual property, and it may not 

be possible to figure out exactly which calculations were performed. There is, however, a wealth of 

established literature on this topic, which will be explored in the next section of this chapter.  

 

3 PM (particulate matter) refers to airborne solids or liquids. Its size is measured in micrometres and is indicated by 
the subscript. E.g. PM2.5 has a diameter of 2.5 micrometres or less. (NSW Health, 2020) 
4 FEM (Federal Equivalent Method) instruments meet a strict measurement performance criteria to ensure data 
quality (Clements, 2019). 
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What to expect when conducting calibrations  

Now that you are aware of why calibration is important, the next step is to evaluate how much time, 

effort, and resources are needed to conduct calibration procedures at varying levels of complexity. The 

exact level of calibration your sensing devices will require depends on your project goals. For example, if 

you are investigating pollution hotspots, or running a long-term supplementary network to a nearby 

monitoring station, it is highly recommended that you carry out a co-location study before deploying a full 

sensing device network.  

An example of a co-location study on low-cost sensing devices. The devices were mounted on a regulatory air quality 

monitoring station to gather data for several months. The data sets from both devices were later used for comparison and 

calibration purposes. Image source: University of Sydney  

To conduct a co-location test, follow these steps: 

1. Determine a relevant co-location site

Find a location that has access to high-quality air quality data, able to be traced back to a 

certified air quality reference instrument. You should ideally locate two sites to get a good 

geographic distribution.  

2. Establish access to the site, and build relationship with the site managers 

Running a co-location test will require physical access to the site, access to reference instrument 

data, and regular communication with on-site staff. Local governments can organise co-location 

testing by contacting their relevant state authorities that manages their air quality network. A 

minimum data collection period of one month is generally necessary. Staff from your own 

organisation will need to be designated to oversee the co-location testing. Data sharing and 

access protocols will also need to be established prior to the co-location test.   
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3. Conduct a site visit   

Additional work and resources will be required to set up the sensing devices appropriately on-

site. A site visit will ensure all set-up details are understood (such as mechanical mounting, 

power requirements, and data communication and storage).  

4. Make any required modifications   

Make appropriate plans to ensure ease of device set-up (such as providing mechanical mounting 

panels, or electrical wiring). It is best to assume that a staff member (or a contractor you hire) will 

be needed to manage this.   

5. Install devices on-site; run co-location tests 

Commence the co-location process, which may run for 1-3 months. During this time, site visits 

may be needed to check on progress. 

6. Collect and clean data; compare results 

The data collected by your devices will need to be cleaned, so that it can be usefully compared to 

reference instrument data. This involves checking for consistency in the measurement units, 

dealing with any data dropouts, and synchronising the timestamps of each measurement. After 

this, data analysis can be conducted, including the calculation of the R2 correlation value. For a 

staff member with basic data analysis experience, this can take several days. The on-site staff 

may be able to assist, but this service should not be assumed. More detailed studies of the data 

will require specialists or researchers to be involved (e.g. PhD students or academics at a  

local university).  

7. Document the co-location test in detail  

Documenting the entire co-location process is critical to the future success of your air quality 

project. If there is ever any doubt about the performance of the sensing devices in your network, 

this co-location data will be used to resolve any problems or inaccuracies. Make sure you report 

in detail on all procedures (e.g. when, where, and how sensing devices were mounted; or any 

notable environmental disruptions during the co-location, such as bushfires).  

8. Apply calibration; commence air quality project 

Once the calibration factors are determined, these can be applied as a mathematical correction 

factor to future measurements. You are now ready to deploy your air quality sensing  

device network.  

 

TIP: Do not underestimate the work required for co-location testing   

It is highly recommended that you allocate a staff member to oversee this time-

consuming process of co-location. If this is not possible, ensure you have good 

relationships and arrangements with the staff at your closest air quality regulatory 

monitoring station. Early stakeholder engagement of this nature will be critical, especially 

if you have limited resources.  
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Common questions about co-location 

There is no ‘one-size-fits-all’ approach to device calibration using co-location. However, here are some 

general answers to commonly asked questions about co-location tests:  

How long should co-location take? 

Typically, co-location studies are done for a period of 1-3 months, but there is no set rule about what 

kind of time period is best. It has been suggested that 30-60 days of data is a minimum to get a 

statistically significant data sample (Liang, 2021). However, it is also the case that – in certain 

circumstances – doing a co-location study for longer than 60 days can potentially make it harder to 

characterise the sensors. This is because some low-cost sensors have shown degrading performance 

beyond this time period, and seasonal variations in the environment start to take effect. For this reason, 

it is best practice to choose a time period during which the environment does not significantly change.  

Do we need to recalibrate? 

Performing regular calibrations on the same sensing device is recommended, because calibration is only 

effective under the conditions in which the co-location study was conducted. Seasonal shifts and 

changes to the immediate environment (e.g. new highways or construction sites) may affect the 

performance of a prior calibration. In addition, sensor performance will degrade over time. In some 

cases, for example, gas sensors showed significant drift even within just one month (Miskell et al., 

2016). There are niche methods to measure this degradation ‘on the fly’, so that you can decide when a 

recalibration is necessary, but these methods are not yet widely used (Hasenfratz et al., 2012).  

Do we need to calibrate all sensors?   

It is good practice to calibrate every sensor that you will be testing. However, there are circumstances 

where this is not practical. Although every sensor differs slightly in its performance, similar brands/units 

will face the same types of errors, as their fundamental sensing mechanisms are the same. Therefore, it 

may be possible to calibrate one unit, and then apply that same correction factor to other units of the 

same make/model. For example, the Breathe London project used a select number of devices for 

periodic co-location with reference instruments, and transferred those calibration factors to nearby units. 

For more details, see the Breathe London Technical Report (Breathe London, 2021).  

Are there any additional costs? 

A co-location test will require key personnel to regularly check the data feeds. To simplify this process, it 

is best to arrange for the sensor data to be remotely accessible (if it is not already). This saves on travel 

time to the site to inspect the device. Bear in mind that data communication will come at a fixed cost (for 

instance, a LoRaWAN gateway service can cost approximately AU$100-200 per month, depending on 

the provider package). 
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How to apply correction factors and further analysis 

After performing a co-location study, you may need to apply correction factors yourself, depending on 

the sensing device vendor you have selected. Certain vendors include this as a service, where you 

provide the co-location data to them, and they derive the calibration factors and apply them to the 

devices in real time. Other vendors may have co-location testing included in their product offering, but 

the exact correction factors used may be proprietary information.  

However, for many smart low-cost sensing devices, you will have to carry out this process yourself, and 

make sure the data output is corrected. This section of the chapter will guide you on how to do this.  

Once you have completed a co-location study, you will have two sets of data: one for your sensing 

device’s measurements; and one for the reference-grade instrument. If your sensing device records 

more than one parameter, you may have multiple data sets to analyse.  

The next steps depend on what level of accuracy your application demands, and the degree to which 

you are willing to apply correction factors.  

Figure 4 describes the methods used broadly in the literature to calculate and apply correction factors, 

explored in more detail in (Liang, 2021). It is important to understand that more sophisticated methods 

may improve the overall agreement between the sensors in a specific co-location test, but there is no 

guarantee this will work in all cases. For instance, when the same calibration is applied in a different 

context (e.g. in a new location), it may not be effective, since the calibration was highly tuned to the 

previous location.   

 

 

 

Figure 4. The levels of 'corrections' that can be applied to sensing device outputs after a co-location study is done. Deeper 

layers of the diagram point to more sophisticated methods that may have increasing correction effects, but come at the cost 

of increased complexity.  
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Often, the simplest method is also the most versatile. Univariate linear regression can be performed to 

establish a linear relationship between the two data sets. In a co-location study, the independent variable 

is the low-cost sensing device’s output, and the reference instrument is the dependent variable. This 

establishes a linear relationship as: 

 

LCS =  +  +  

Equation 1. A simple linear relationship between the low-cost sensing device data (SLCS) and the reference instrument  

data (Sref)  

SLCS are the low-cost sensing device measurements; Sref are the reference instrument readings; 

0 represents the constant offset (intercept); 1 is the regression coefficient (gradient); and  is the 

measure of error. Ideally, if there are no offsets or scaling factors, the coefficient 0  is zero, and 1 is 

simply 1.  

 

Conducting a regression analysis will provide numerical values for the above relationship. Figure 5 

shows an example where the sensor data is plotted against the reference instrument, and the linear 

relationship is derived (and subsequently used to correct the readings). The raw results are seen on the 

left, with the data being slightly skewed from ‘line of agreement’. The linear regression has identified the

relationship through the coefficients in Equation 1. Once this has been done, you can simply invert the 

offset and bias to create a ‘calibrated’ data set.  

 

Figure 5. Application of a univariate regression analysis to a hypothetical data set. (Left) Applying the linear regression to the 

data set establishes a linear relationship between the two data sets. (Right) Using the coefficients, one can then 'correct' for the 

measured data, so that it best aligns with the line of agreement for the reference data.  

This correction will help align any future data to a more relevant range that is indicative of the reference 

instrument with which it was co-located. How well the linear regression has performed can then be 

quantified, by measuring the ‘R2 correlation coefficient’.  
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The R2 correlation coefficient  

The Pearson correlation coefficient is the most common parameter to measure the strength of linear 

association between two variables – denoted by R. The coefficient can take values ranging from +1 

(strong positive correlation) to -1 (strong negative correlation). By taking the squared value (R2), which 

ranges from 0 to 1, we consider the proportion of variance in the measurement that can be explained by 

reference data in the regression model. Higher values indicate a stronger correlation between the  

data sets.  

There are no clear, set values of R2 that enable one to define sensing devices as being in ‘good 

agreement’ with one another; it all depends on the data use case requirements. Typical R2 values, and 

the circumstances in which they were derived, are outlined in (Rai et al., 2017) for a wide range of air 

quality sensing devices (as a general guide, values of R2 > 0.8 are considered ‘excellent’, and tests

achieving R2 < 0.1 are considered to be ‘extremely poor performance’). The exact thresholds of a ‘good 

agreement’ between devices is highly dependent on the chosen application, but you should record the 

R2 correlation coefficient of your co-location test for future reference.  

 

The limitations of R2

Although the R2 test is a common method to assess the performance of a co-location 

study, it has some severe limitations when used in isolation. One of the most critical 

factors is that it does not take into account the range of pollutant concentrations.   

For example, if a co-location test is conducted for NO2 levels, but the true values do not 

rise by any significant amount, the comparison becomes very difficult. The R2 value 

expresses how one variable responds as the other changes, but if this change is small to 

begin with, it will naturally be low.  

It is therefore necessary to make sure that the natural variation of the pollutant is 

significant, or to also report the 'mean absolute error’ values as well. This topic is 

explored in more depth in (Micalizzi, 2020).  

Employing more sophisticated methods 

In addition to simple univariate linear regression, there are other methods that can be applied to improve 

agreement between sensors. It is beyond the scope of this chapter to go into detail about each method, 

but there are well-established and documented steps in the technical literature to conduct them, should 

they be necessary to your project. For example, using multivariate linear regression expands on 

Equation 1 by including more parameters that may affect accuracy (such as humidity, temperature, 

pressure, wind speed, dew point, and precipitation).  

However, these complex models have only shown marginal improvements in some cases, and run the 

risk of overcomplicating the relationship between sensors. Machine learning is a collective term to 

include various data-driven approaches used to establish relationships between the sensors. Certain 

studies have indicated that a 10% improvement in R2 correlation results were observed using this 

approach, when compared against linear regression results (Mahajan & Kumar, 2020). 
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Specific methods also exist to correct for the influence of humidity on particle counters readings.  

Aerosols are known to undergo hygroscopic growth at high relative humidity (>60%), and low-cost 

sensors need to be corrected for using κ-Köhler theory, as described in (Crilley et al., 2020). This 

process involves additional calculations, and assumes humidity data is available.  

In summary, there are multiple correction factors that can be applied to overcome specific issues related 

to sensor readings and calibration. However, every intervention comes with a risk of biasing the data 

towards what is intended as a ‘good result’. The assumptions underlying these corrections should 

always be justified and disclosed. Often, this requires deep technical knowledge, and these methods are 

only recommended if you have access to experienced personnel (or contractors) as part of your  

project team.  
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Associated OPENAIR resources 

Supplementary resources

A framework for categorising air quality sensing devices 

This resource presents a new framework for categorising air quality sensing devices in an Australian 

context. It identifies four tiers of device types, separated in terms of functionality, and the quality and 

usability of their data output. It is designed to assist with the selection of devices that are appropriate to 

meeting the needs of a project and an intended data use case. 

Sensing device performance evaluation methodology 

This resource presents a methodology for evaluating the performance (and corresponding data quality) 

of smart low-cost air quality sensing devices. 

Further information 

For more information about this project, please contact: 

Peter Runcie 

Project Lead, NSW Smart Sensing Network (NSSN)  
Email: peter@natirar.com.au 
 

This Best Practice Guide chapter is part of a suite of resources designed to support local 

government action on air quality through the use of smart low-cost sensing technologies. It is 

the first Australian project of its kind. Visit www.openair.org.au for more information.  

OPENAIR is made possible by the NSW Government’s Smart Places Acceleration Program.  
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